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In this study the one-dimensional wave propagation in a functionally graded
elastic slab is considered. It is assumed that the sti�ness and density of the
medium vary continuously in thickness direction and it is initially at rest and
stress-free. The slab is subjected to a pressure pulse on one surface and a
vanishing stress or displacement condition on the other. The solution is
obtained in wave summation form. Propagation of a rectangular pressure pulse
in a graded medium that consists of either nickel/zirconia or aluminum/silicon
carbide is studied as examples. It is shown that there is considerable wave
distortion in time and the distortion is much more pronounced in slabs with
®xed/free boundary conditions. A simple approximate expression giving the
peak stress is developed. Also it is demonstrated that the energy balance
principle may be used as a convergence criterion in the calculation of stresses.

# 1999 Academic Press

1. INTRODUCTION

Within the past decade there has been considerable interest in grading the
thermomechanical properties of particulate composites as a tool for designing
new materials for speci®c applications. Most of the research in this area involves
the development of graded coatings and interfacial regions for the purpose of
reducing residual and thermal stresses and increasing the bonding strength (see
references [1±4] for review and further references). Such particulate composites
with continuously varying volume fractions are known as functionally graded
materials (FGMs). Aside from the thermal barrier coatings, some of the
potential applications of FGMs include manufacturing of wear-resistant
components such as gears, cams, bearings, and machine tools. Regardless of the
®elds of application, generally the dominant modes of failure in FGM coatings
and interlayers appear to be cracking and spallation. In addition to the
appropriate fracture mechanics, dealing with these failure problems requires a
detailed stress analysis for identifying the likely sites of failure initiation and for
determining the peak values of stresses. In some cases the loading of these
inhomogeneous components may be dynamic in nature. Thus, an important area
of interest in considering the applications of graded materials would be to study
the dynamic response of the component to, for example, impact or blast loading.
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In elastodynamics of materials with continuously varying properties, usually the
pulse shape is distorted in time, the wave propagation speed is not constant, and
there are no sharp interfaces that would cause wave re¯ections. Consequently,
even in the simple case of one-dimensional wave propagation the locations and
magnitudes of peak stresses cannot be determined by inspection.
Because of its relevance in geophysics and soil mechanics, in the past there has

been quite considerable interest in the elastodynamics of inhomogeneous media.
In 1946 Friedlander [5] proposed a solution that consists of a series of terms the
®rst of which describes the wave motion predicted by geometrical optics and the
subsequent terms account for certain types of diffraction effects. Karal and
Keller [6] extended this method to treat general wave propagation problems in
inhomogeneous elastic media by formulating the problem in terms of
displacements and displacement potentials. Pekeris [7] used an asymptotic
method to solve the problem for a half space with a variable speed of sound and
reduced the solution to a Fourier±Bessel series. Scholte [8], who allowed for
arbitrary variation in speed of sound and density, obtained a solution by using a
successive approximations technique in which the sequence of terms obtained
correspond to the direct wave, single re¯ections, and multiple re¯ections of
successive order. Gupta [9] obtained a solution involving Bessel functions of
imaginary order for the Helmholtz equation with linear variation of the wave
speed in depth. Lindholm and Doshi [10] considered a slender bar with free/free
ends and variable Young's modulus and obtained a solution that is synthesized
from the eigenfunctions by using the principle of virtual work. Reiss [11, 12]
considered the Klein±Gordon equation and obtained an asymptotic solution.
To solve the initial value problems arising from the wave propagation in

elastic solids, a widely used technique is that of Laplace transforms. Whittier [13]
treated the problem that was considered by Lindholm and Doshi [10] by using
Laplace transforms and gave an asymptotic solution. Similarly, Payton [14]
considered a semi-in®nite rod subjected to a pressure step at its end with several
different wave speeds. Steele [15] developed an asymptotic solution for a semi-
in®nite elastic slab which was subjected to an impulsive loading and had a
Young's modulus varying in depth direction. Yedlin et al. [16] considered the
wave equation for a semi-in®nite medium in which both Young's modulus and
density are allowed to vary smoothly in depth direction. Karlsson et al. [17]
developed a Green's function approach for one-dimensional transient wave
propagation in composite materials. Instead of assuming the material parameters
to be continuous functions, one may assume the composite to be a multilayered
medium having piecewise constant properties. Because of its application to
layered composites, in the past the elastodynamics of such piecewise
homogeneous materials has also attracted considerable attention (see for
example, references [18±20]). There are also purely numerical techniques to treat
the problem of wave propagation in inhomogeneous solids. For example, Pai
[21] used the method of generalized Haskell matrix to solve the one-dimensional
wave equation, whereas Harker and Ogilvy [22] used a ®nite difference technique
to obtain the solution of the coherent wave propagation problem for
inhomogeneous materials.
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In this study we consider the one-dimensional problem in elastodynamics for
an FGM plate in which material properties vary only in thickness direction. The
boundary conditions are assumed to be either free/free or ®xed/free. The Laplace
transform technique is used to solve the problem. Even though the technique
could accommodate arbitrary inputs, the problem is solved under zero initial
conditions with a rectangular pressure pulse as the external load.

2. FORMULATION OF THE PROBLEM

The one-dimensional elastodynamic problem under consideration is described
in Figure 1. It is assumed that the slab is isotropic and inhomogeneous with the
following fairly general properties:

E 0�x� � E 0o a
x

l
� 1

� �m
, r�x� � ro a

x

l
� 1

� �n
, �1a, b�

where r is the mass density, l is the thickness, a, m, and n are arbitrary real
constants with a>ÿ1, E 0o and ro are the elastic constant and density at x� 0,
and the elastic constant E 0 is determined under the assumption that syy� szz and
the slab is fully constrained at in®nity. It can thus be shown that

E 0 � E�1ÿ ��
�1� ���1ÿ 2�� , �2�

E(x) and v(x) being the Young's modulus and the Poisson's ratio of the
inhomogeneous material. Note that the displacement components uy and uz are
zero, and the stress state is one-dimensional and is given by

l

x

of (t)

0

l

x

of (t)

0

(b)(a)

Figure 1. Boundary conditions and loading for an FGM slab; (a) free/free, (b) ®xed/free bound-
aries, sxx(l, t)� sof(t) stress pulse.
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sxx � E 0
@u

@x
, �3�

where the unknown function u(x, t)� ux(x, t) must satisfy the following wave
equation:

@

@x
E 0�x� @u

@x

� �
� r�x� @

2u

@t2
: �4�

Assuming that the slab is at rest for tE 0, equation (4) must be solved under the
following initial conditions:

u�x, 0� � 0,
@

@t
u�x, 0� � 0, 0 < x < l: �5a, b�

Now introducing the normalized quantities

X � x=l, T � cot=l, U � u=l, co �
������������
E 0o=ro

p
, �6�

from equations (1), (4), and (5) it may be shown that

@

@X
�aX� 1�m @U

@X

� �
� �aX� 1�n @

2U

@T2
, �7�

U�X, 0� � 0,
@

@T
U�X, 0� � 0: �8�

By using the standard Laplace transform with respect to normalized time T, the
solution of equation (7) may be expressed as

U�X,T� � 1

2pi

�c�i1

cÿi1
Û�X, p�epT dp, �9�

where the differential equation to determine UÃ is obtained from equations (7)
and (8) as follows:

Z2
d2Û

dZ2
�mZ

dÛ

dZ
ÿ p2

a2
Znÿm�2Û � 0, Z � �aX� 1�: �10a, b�

Equation (10) can be solved in closed form, giving

Û�X, p� � �aX� 1�1ÿm2 C1�Ij 1ÿm
nÿm�2j

2p

�nÿm� 2�a
���� �����aX� 1�nÿm�22

� ��

�C2�Kj 1ÿm
nÿm�2j

2p

�nÿm� 2�a
���� �����aX� 1�nÿm�22

� �� �11a�

for m 6� n� 2 and

Û�X, p� � C3�aX� 1�s3 � C4�aX� 1�s4 �11b�
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for m� n� 2, where

s3, s4 � ÿ n� 1

2
2

�������������������������������������
n� 1

2

� �2

�
�
p

a

�2
s

, �12�

Ib(z) and Kb(z) are the modi®ed Bessel functions of the ®rst and second kind,
and C1, . . . ,C4 are unknown functions of p. The pairs of functions (C1, C2) or
(C3, C4) are to be determined from the boundary conditions at x� 0 and x� l.
At x� 0 the condition is

sxx�0, t� � 0, t > 0, (``free'' boundary) �13a�
or

u�0, t� � 0, t > 0, (``fixed'' boundary). �13b�
At x� l the slab is subjected to a stress pulse given by

sxx�l, t� � so f �T�, T � cot=l, t > 0, �14�
where the constant so is the magnitude of the pulse, the function f describes its
time pro®le, and without any loss in generality, it is assumed that if |f |E 1. In
the transform domain the boundary conditions (13) and (14) may be expressed
as

E 0
d

dX
Û�0, p� � 0, (``free'' boundary), �15a�

Û�0, p� � 0, (``fixed'' boundary), �15b�

E 0
d

dX
Û�1, p� � so f̂�p�, f̂ �p� �

�1
0

f �T �eÿpT dT: �16�

3. SOLUTION FOR THE SLAB WITH FREE/FREE BOUNDARIES

3.1. THE CASE OF m� n� 2

Referring to equation (1), if m� n� 2 and the boundaries of the slab are free,
the solution is given by equation (11b) where the functions C3( p) and C4( p) are
determined from equation (15a) and (16). Thus, in the transform domain the
displacement and stress may be expressed as

Û�X, p� � so f̂ �p�
E0o�a� 1�n�2as3s4

s4�aX� 1�s3 ÿ s3�aX� 1�s4
�a� 1�s3ÿ1 ÿ �a� 1�s4ÿ1

" #
, �17�

ŝxx�X, p�
s0

� f̂ �p� aX� 1

a� 1

� �n�1
2 eÿd�ln�a�1�ÿln�aX�1�� ÿ eÿd�ln�a�1��ln�aX�1��

1ÿ eÿ2d ln�a�1�

� �
, �18�
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d �
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� �2
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�
p

a

�2
s

: �19�

From a viewpoint of failure mechanics there is a greater interest in the

evaluation of stresses than the displacements. The inversion of transforms such

as equation (18) may be accomplished by a technique of either residue

summation or wave summation. The residue summation is best suited to study

the long time response, whereas the wave summation technique is more

appropriate to short time analysis and is more descriptive in displaying the wave

character of the response. In this study the main interest is in the transient

response of the medium and, hence, only the wave solution will be developed. To

do this one ®rst expands equation (18) into an in®nite series as follows:

ŝxx�X, p�
so

� f̂ �p� aX� 1

a� 1

� �n�1
2

6
X1
k�0
feÿdj�2k�1� ln�a�1�ÿln�aX�1�j ÿ eÿdj�2k�1� ln�a�1��ln�aX�1�jg: �20�

Referring to the Abel±Tauber theorems regarding the asymptotic results, it is

observed that for a given transform pair g(T) and gÃ(p) the asymptotic behavior

of gÃ(p) for large values of p corresponds to the behavior of g(T) for small values

of T. Thus, the inversion of equation (20) suitable for evaluating the small time

response may be expressed as

sxx�X,T�
so

� aX� 1

a� 1

� �n�1
2

6
X1
k�0

f�Tÿ b1k� �
X1
j�1

�Tÿb1k
0

f �Tÿ b1k ÿ t� a1kjt
jÿ1

� jÿ 1�! dt

" #
H�Tÿ b1k�

(

ÿ f�Tÿ b2k� �
X1
j�1

�Tÿb2k
0

f �Tÿ b2k ÿ t� a2kjt
jÿ1

� jÿ 1�! dt

" #
H�Tÿ b2k�

)
,

�21�

b1k � 1

a
��2k� 1� ln�a� 1� ÿ ln�aX� 1��,

b2k � 1

a
��2k� 1� ln�a� 1� � ln�aX� 1��,

�22�

a1kj and a2kj are known functions of X (see Appendix A), and H(t) is the

Heaviside function. In the asymptotic expansions, if only the ®rst terms are kept,

the following approximation is obtained that is valid for small values of T only:
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sxx�X,T�
so

� aX� 1

a� 1

� �n�1
2 X1
k�0
� f �Tÿ b1k�H�Tÿ b1k� ÿ f �Tÿ b2k�H�Tÿ b2k��:

�23�
The solution given by equation (21) can further be simpli®ed by using the
following result [23] in equation (20):

1

2pi

�c�i1
cÿi1
�eÿc1p ÿ eÿc1

���������
p2�c2

2

p
�e pt dp � 0, 0 < t < c1,

�
c1c2J1�c2

��������������
t2 ÿ c21

q
���������������

t2 ÿ c21

q , t > c1,

�24�

where Re(p)> |Im(c2)| and J1(z) is the Bessel function of the ®rst kind of order
one. From equations (20) and (24) it may then be shown that

sxx�X,T�
so

� aX� 1

a� 1

� �n�1
2

6
X1
k�0

��
f �Tÿ b1k�

ÿ
� ������������

T 2ÿb2
1k

p

0

f �Tÿ
����������������
t2 � b21k

q
�
�n� 1�ab1kJ1 n� 1

2
at

� �
2
����������������
t2 � b21k

q dt

3775
6H�Tÿ b1k� ÿ f �Tÿ b2k� ÿ

� ������������
T 2ÿb2

2k

p

0

f�Tÿ
����������������
t2 � b22k

q
�

"

6
�n� 1�ab2kJ1 n� 1

2
at

� �
2
����������������
t2 � b22k

q dt

3775H�Tÿ b2k�

9>>=>>;; �25�

where b1k and b2k are again given by equation (22). The solution given by
equation (25) is ``exact'' and can be used to assess the effectiveness of the
asymptotic techniques by, for example, comparing the results obtained from
equations (21) and (25).

3.2. THE CASE OF m 6� n� 2

In the material model described by equation (1), if m 6� n� 2, then the solution
is given by equation (11a) with equations (15a) and (16) to be used to determine
C1(p) and C2(p). The transform of the stress may then be expressed as
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ŝxx�X, p�
so

� f̂ �p� aX� 1

a� 1

� �m�n
4 W1xe

�zoÿzx� ÿW2xe
ÿ�zoÿzx�

W1le�zoÿzl� ÿW2leÿ�zoÿzl�

� �
,

zx � 2p

�nÿm� 2�a
���� �����aX� 1�nÿm�22 , zo � 2p

�nÿm� 2�a
���� ����,

�26�

zl � 2p

�nÿm� 2�a
���� �����a� 1�nÿm�22 : �27�

The functions W1x , W2x , W1l , and W2l are given in Appendix B. To perform the
asymptotic analysis ®rst one observes that for large |z| one has [24]��������

2pz
p

ez
I��z� �

X1
k�0

��, k�
�ÿ2z�k � eÿ2zÿ ��1

2� �piX1
k�0

��, k�
�2z�k , ÿ 3

2
p < arg z <

1

2
p,

�
X1
k�0

��, k�
�ÿ2z�k � eÿ2z� ��1

2� �piX1
k�0

��, k�
�2z�k , ÿ 1

2
p < arg z <

3

2
p,

�28�

�����
2z

p

r
ezK��z� �

X1
k�0

��, k�
�2z�k , �29�

where (�, k) is the Hankel symbol de®ned by

��, k� � 1, k � 0,

�
G � � 1

2
� k

� �
k!G � � 1

2
ÿ k

� � � 2ÿ2k

k!
f�4�2 ÿ 12��4�2 ÿ 32� . . . �4�2 ÿ �2kÿ 1�2�g,

k > 0: �30�
By substituting from equations (28), (29), and Appendix B into equation (26),
arranging the expansion to a suitable form for wave summation and inverting
the result, one obtains an asymptotic solution similar to equation (21). For
example, it may be observed that for large values of p the ®rst term
approximations are

W1x �W2x �W1l �W2l � 4, �31�
giving an asymptotic result for sxx(X, T ) as follows:

dxx�X,T�
so

� aX� 1

a� 1

� �m�n
4 X1

k�0
� f �Tÿ z1k�H�Tÿ z1k� ÿ f �Tÿ z2k�H�Tÿ z2k��,

�32�
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where the functions z1k and z2k are given by

z1k �
2

�nÿm� 2�a
���� ���������2k� 1��a� 1�nÿm�22 ÿ 2kÿ �aX� 1�nÿm�22

����,
z2k �

2

�nÿm� 2�a
���� ���������2k� 1��a� 1�nÿm�22 ÿ �2k� 2� � �aX� 1�nÿm�22

����:
�33�

4. THE SOLUTION FOR FIXED/FREE BOUNDARIES

4.1. THE CASE OF m� n� 2

In this case the solution in the transform domain is given by equation (11b)
subject to boundary conditions (15b) and (16). Thus, after determining C3 and
C4 , ŝxx may be expressed as

ŝxx�X, p�
so

� f̂ �p� aX� 1

a� 1

� �n�1
2 X1
k�0
�ÿ1�k 2d� n� 1

2dÿ nÿ 1

� �k

eÿd��2k�1� ln�a�1�ÿln�aX�1��
(

� 2d� n� 1

2dÿ nÿ 1

� �k�1
eÿd��2k�1� ln�a�1��ln�aX�1��

)
�34a�

for nEÿ1 and a> 0, or (n� 1) ln(a� 1)< 4, and

ŝxx�X, p�
so

� f̂ �p� aX� 1

a� 1

� �n�1
2 X1
k�0
�ÿ1�k 2dÿ nÿ 1

2d� n� 1

� �k�1
ed��2k�1�� ln�a�1��ln�aX�1��

(

� 2dÿ nÿ 1

2d� n� 1

� �k

ed��2k�1�� ln�a�1�ÿln�aX�1��
)

�34b�

for n>ÿ1 and ÿ1< a< 0. In equation (34) d is de®ned by equation (19). Note
that the transforms given by equation (34) are quite similar to equation (20) and
would lead to an asymptotic solution in the wave summation form similar to
equation (21). Also note that for large values of p one has a ®rst term
approximation

2d� n� 1

2dÿ nÿ 1
� 2dÿ nÿ 1

2d� n� 1
� 1, �35�

giving the following asymptotic expression for sxx:

sxx�X,T�
so

� aX� 1

a� 1

� �n�1
2 X1
k�0
�ÿ1�k� f �Tÿ b1k�H�Tÿ b1k� � f �Tÿ b2k�H�Tÿ b2k��,

�36�
where b1k and b2k are given by equation (22).
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4.2. THE CASE OF m 6� n� 2

In this problem the solution is given by equations (11a), (15b), and (16), and
the transform of the stress may be expressed as

ŝxx�X, p�
so

� f̂ �p� aX� 1

a� 1

� �m�n
4 W3xe

�zoÿzx� �W4xe
ÿ�zoÿzx�

W3le�zoÿzl� �W4leÿ�zoÿzl�

� �
, �37�

where the functions zx , zo , and zl are de®ned by equation (27) and W3x , W4x ,
W3l , and W4l are given in Appendix B. Again, it is observed that equation (37) is
quite similar to equation (26) and would lead to a similar asymptotic solution
suitable for evaluating the response for small T. Also, for large values of p one
has

W3x �W4x �W3l �W4l � 2, �38�
giving the ®rst term asymptotic expression for the stress as follows:

sxx�X,T�
so

� aX� 1

a� 1

� �m�n
4 X1

k�0
�ÿ1�k� f �Tÿ z1k�H�Tÿ z1k� � f �Tÿ z2k�H�Tÿ z2k��,

�39�
where z1k and z2k are given by equation (33).

5. RESULTS AND DISCUSSION

As a ®rst example we consider an FGM slab that consists of nickel and
zirconia. We assume that the thickness of the plate is l� 5 mm, on one surface
the medium is pure nickel, on the other surface pure zirconia, and the material
properties E 0(x) and r(x) vary smoothly in thickness direction. A pressure pulse
de®ned by

sxx�l, t� � so f �t� � ÿso�H�t� ÿH�tÿ to�� �40�
is applied to the surface x� l and the boundary x� 0 is either ``free'' or ``®xed''
(Figure 1). The pulse duration is assumed to be to� 0�2 ms. The properties of the
constituent materials used in the examples are given in Table 1. Referring to the
boundary conditions and material compositions shown in Figures 1 and 2,
respectively, it is seen that there are four different numerical problems.
The material parameters de®ned by equations (1) and (2) for the FGMs used

in the examples are given in Table 2. To examine the accuracy of the asymptotic
results given in sections 3 and 4, we consider the Ni/ZrO2 slab with free/free
boundaries subjected to the pulse given by equation (40) on the ZrO2 side
(Figures 1(a) and 2(a)). The exact solution of the problem is given by equation
(25) whereas equation (21) gives the asymptotic result. The accuracy of the result
would be expected to depend on the number of terms retained in the inner series
in equation (21). For the example considered Table 3 shows the comparison of
the normalized stress sxx/so obtained from the exact solution (25) and from
equation (21) by retaining a limited number of terms in the inner series. The
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results are given at three locations in the slab for ®ve different values of time. It

may be seen that the convergence is quite good and by retaining, for example,

six terms, the accuracy of the results is ®ve signi®cant digits or better. In the

calculated results for sxx/so given in this section, equation (21) and (the inversion

of) equation (34) are used by retaining six terms in the asymptotic expansion.

The stress is calculated up to 12 ms (the propagation time of the plane wave

through the thickness l� 5 mm is approximately 0�77 ms in pure ZrO2 and

0�88 ms in Ni). However, it is clear that if the response is required for larger

values of time, one may need to use a greater number of terms in the asymptotic

expansion and a convergence check may have to be performed.

For various combinations of boundary conditions and material compositions

shown in Figures 1 and 2 the normalized stress is given in Figures 3±15. Figures

3 and 9 show a sketch describing the variation of sxx/so with x and t. In all cases

the initial pulse is applied at x� l. If the conditions shown in Figures 1(a), (b)

and 2(a), (b) are designated as (a, b) and (a, b), respectively, the groups of

Figures 3±6, 7±8, 9±12, and 13±15 correspond to the conditions aa, ab, ba, and

bb, respectively. For example, Figure 4 shows the stress as a function of location

x for three different values of time and Figures 5 and 6 show the time

dependence of the stress at locations x/l� 1/50 and x/l� 1/2, respectively, for

boundary conditions described by Figure 1(a)and material composition given by

TABLE 1

Properties of materials used in the examples

E (GPa) � r (kg/m3)

ZrO2 151 0�33 5331
Ni 207 0�31 8900
SiC 210 0�17 3100
Al 71 0�33 2710

(a)
1.2

0.8

0.4
0.50.0 1.0

x/lNi ZrO2

E'/E'o

/  o

(b)
2.0

0.8

1.2

1.6

0.50.0 1.0

x/lZrO2 Ni

E'/E'o

/  o

Figure 2. The variation of density and elastic modulus in (a) Ni/ZrO2 and (b) ZrO2/Ni FGM
slabs (Table 2 and equation(l)).
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TABLE 2

Material constants of FGMs used in the examples and defined by equations (1) and (2)

Ni/ZrO2 ZrO2/Nr SiC/Al Al/SiC
(Figure 2(a)) (Figure 2(b)) (Figure 18(a)) (Figure 18(b))

E 0o (GPa) 286�922 223�728 225�719 105�197
ro (kg/m3) 8900 5331 3100 2710

a ÿ0�14096 ÿ0�12354 ÿ0�53395 1�14568
m ÿ1�8866 ÿ1�8866 1�00000 1�0000
n ÿ3�8866 ÿ3�8866 0�17611 0�17611

TABLE 3

Normalized stress �xx(x, t)/�o obtained from the exact solution and asymptotic approxima-
tion for Ni/ZrO2 FGM slab with free/free boundaries subjected to a rectangular pulse on the

ZrO2 side (Figures 1(a) and 2(a))

t(ms) x/l� 0�2 x/l� 0�5 x/l� 0�8
Exact solution 2 ÿ0�0021322348 ÿ0�0049332263 ÿ1�0343400828

4 ÿ1�1595629726 0�0117491390 0�0043553632
6 1�1790003476 0�0160863639 0�0059628547
8 ÿ0�0111121299 1�0798490653 0�0073659788
10 ÿ0�0128308112 ÿ0�296942924 ÿ0�0441531228
2 0 0 ÿ1�0367694771

1-term 4 ÿ1.1620637970 0 0
approximation 6 1�1620637970 0 0

8 0 1�0963939785 0
10 0 0 0
2 ÿ0.0021544500 ÿ0.0049795629 ÿ1.0343718842

2-term 4 ÿ1�1596961101 0�0116548623 0�0043244623
approximation 6 1�1793189959 0�0163168071 0�0060542473

8 ÿ0�0107722501 1�0806462086 0�0077840322
10 ÿ0�0129267001 ÿ0�0298773776 ÿ0�0443243692
2 ÿ0�0021238545 ÿ0�0049188718 ÿ1�0343310106

3-term 4 ÿ1�1595538472 0�0117659643 0�0043688333
approximation 6 1�1790142310 0�0161143887 0�0059847764

8 ÿ0�0110795420 1�0799049378 0�0074029926
10 ÿ0�0127907636 ÿ0�0296233326 ÿ0�0441039430
2 ÿ0�0021322342 ÿ0�0049332252 ÿ1�0343400822

6-term 4 ÿ1�1595629633 0�0117491541 0�0043553716
approximation 6 1�1790003831 0�0160864208 0�0059628866

8 ÿ0�0111120446 1�0798492024 0�0073660561
10 ÿ0�0128306451 ÿ0�0296940260 ÿ0�0441529725
2 ÿ0�0021322348 ÿ0�0049332263 ÿ1�0343400828

8-term 4 ÿ1�1595629729 0�0117491386 0�0043553628
approximation 6 1�1790003456 0�0160863608 0�0059628528

8 ÿ0�0111121395 1�0798490502 0�0073659703
10 ÿ0�0128308411 ÿ0�0296943400 ÿ0�0441531497
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Figure 2(a), or for the case aa. Note that at x� 0 the stress is zero and x� l/50
was selected to have some idea about the spallation stress near the boundary.
The results for x� l/2 are given to provide a typical stress/time pro®le for
various conditions considered.
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Figure 3. The variation of normalized stress with x and t, the case aa (Figures 1(a), 2(a),
l� 5 mm, to� 0�2 ms).
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Figure 4. The variation of normalized stress with x at t1� 8 ms, t2� 8�5 ms, and t3� 9 ms, the
case aa; the arrows indicate the direction of pulse propagation (Figures 1(a), 2(a), l� 5 mm,
to� 0�2 ms).
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By examining the results given in Figures 4±6, where the boundaries of the
slab are stress-free and the pulse is applied on the less stiff side (condition aa), it
may be observed that the duration of the pulse remains constant (at
Dt� t0� 0�2 ms), the pulse shape is distorted as time increases, at a given location
the jump Ds in stress corresponding to leading and trailing edges of the pulse
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Figure 6. The variation of sxx/so with t at a ®xed location x� l/2, the case aa (Figures 1(a),
2(a), l� 5 mm, to� 0�2 ms).
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Figure 5. The variation of sxx/so with t at a ®xed location x� l/50, the case aa (Figures 1(a),
2(a), l� 5 mm, to� 0�2 ms).
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remains constant but its value is dependent on the location x, at x� l, Ds�so ,
for 0< x< l, Ds> so , and as x decreases, Ds increases slightly but

monotonically. After the pulse passes through the stress does not drop to zero

and this overshoot seems to increase with time. Similar observations may be

made for condition ab shown in Figures 7 and 8. In this case too, Ds� so at

x� l, but it decreases monotonically with decreasing x (or decreasing stiffness).

These deviations from the homogeneous materials (shown for reference in a pure

nickel slab by Figures 16 and 17) are much more pronounced in the case of

®xed/free boundaries (ba and bb) than for free/free boundaries (aa and ab). This

can be clearly seen from Figures 9±15. As shown by Figures 11 and 14 there is

the standard doubling of the amplitude of the pulse re¯ected from the ®xed

boundary at x� 0 . However, as in the case of free/free boundaries (Figure 5), in

this case, too, if the ®xed boundary x� 0 is the stiffer side of FGM, then the

jump 2Ds in the re¯ected pulse is greater than 2so (Figure 11, case ba) and if

x� 0 is the less stiff side, then 2Ds< 2so (Figure 14, case bb). Again, the jump

discontinuity Ds in stress is a function in x but at a given location x it is

independent of t. Ds� so at x� l, and increases monotonically as the stiffness of

the medium increases (Figure 10, case ba) or decreases as the stiffness decreases

(Figure 13, case bb). One may also observe that in the case of ®xed/free

boundaries (ba and bb), the magnitude of the overshoot is no longer small

compared to so . Since at a given location Ds is constant, this could be an

additional source of stress ampli®cation.
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Figure 7. The variation of sxx/so with x at t1� 8 ms, t2� 8�5 ms, and t3� 9 ms, the case ab; the
arrows indicate the direction of pulse propagation (Figures 1(a), 2(b), l� 5 mm, to� 0�2 ms).



468 T.-C. CHIU AND F. ERDOGAN

Most of the observations made in this section may be veri®ed by examining
the asymptotic results given in sections 3 and 4, in particular the one-term
approximations expressed by equations (23), (32), (36), and (39) for various
cases. The fact that the pulse duration Dt� to is constant may be seen from
equation (40) and one term asymptotic expressions. The wave summation
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Figure 8. The variation of sxx/so with t at x� l/2, the case ab (Figures 1(a), 2(b), l� 5 mm,
to� 0�2 ms).
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Figure 9. The variation of sxx/so with x and t, the case ba (Figures 1(b), 2(a), l� 5 mm,
to� 0�2 ms).
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Figure 10. The variation of sxx/so with x at t1� 8 ms, t2� 8�5 ms, and t3� 9 ms, the case ba; the
arrows indicate the direction of pulse propagation (Figures 1(b), 2(a), l� 5 mm, to� 0�2 ms).
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Figure 11. The variation of sxx/so with t at x� 0, the case ba (Figures 1(b), 2(a), l� 5 mm,
to� 0�2 ms).
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aspects of the solutions representing the interactions of waves with boundaries

are similar to those in homogeneous media, except that due to material

inhomogeneity the wave speeds are variable. The asymptotic results show that

the magnitude of the jump discontinuity in stress may be expressed as

Ds
so
� co�x� �

a�x=l� � 1

a� 1

� �m�n
4

: �41�

From equations (41) and (1) it follows that

co�x� �
E 0�x�r�x�
E 0�l�r�l�

� �1
4

: �42�

Thus, from equation (42) and Figure 2 it is seen that co(l )� 1, co(x)> 1 for

cases aa and ba (Figure 2(a)) and co(x)< 1 for cases ab and bb (Figure 2(b)).

Needless to say, the actual values of (sxx)max will be the sum of Ds and the

overshoot. The results described by the ®gures and Table 3 indicate that the

overshoot is dependent on the boundary conditions and the material

composition, and there is no simple way of estimating its magnitude. In many

cases, however, the overshoot may be negligible and at a given location x the

maximum stress may be approximated by

�sxx�x, t��max � Kco�x�so , �43�
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Figure 12. The variation of sxx/so with t at x� l/2, the case ba (Figures 1(b), 2(a), l� 5 mm,
to� 0�2 ms).
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Figure 13. The variation of sxx/so with x at t1� 8 ms, t2� 8�5 ms, and t3� 9 ms, the case bb; the
arrows indicate the direction of pulse propagation (Figures 1(b), 2(b), l� 5 mm, to� 0�2 ms).
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Figure 14. The variation of sxx/so with t at x� 0, the case bb (Figures 1(b), 2(b), l� 5 mm,
to� 0�2 ms).
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Figure 15. The variation of sxx/so with t at x� l/2, the case bb (Figures 1(b), 2(b), l� 5 mm,
to� 0�2 ms).
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Figure 16. The variation of sxx/so as a function of x at t1� 8 ms, t2� 8�5 ms, and t3� 9 ms in a
homogeneous nickel slab with free/free boundaries; the arrows indicate the direction of pulse
propagation (Figure 1(a), l� 5 mm, to� 0�2 ms).
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where K� 1 for free/free and K� 2 for ®xed/free boundaries (Figure 1). If one
further assumes that the density and the Poisson's ratio are constant, then
equation (42) becomes

co�x� �
E�x�
E�l�
� �1

4

: �44�

This is the result found by Steele [15] from the leading term of an asymptotic
solution based on geometric optics.
The simple expressions (42) and (44) giving the stress magni®cation factor

co(x) appear to be independent of the material model used. For example, instead
of equation (1), if the parameters of the inhomogeneous medium are given by

E 0�x� � E 0oeax, r�x� � roe
ax, c �

�������������
E 0o=ro

q
, �45�

the exact and ®rst term asymptotic expressions of the normalized stress may be
obtained by following the procedure outlined in sections 2 and 3. The solution is
given in Appendix C from which it is seen that

Ds
so
� co�x� � eÿ

a
2�lÿx�: �46�

From equations (45) and (46) one ®nds
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Figure 17. The variation of sxx/so as a function of t at x� l/2 in a homogeneous nickel slab
with free/free boundaries (Figure 1(a), l� 5 mm, to� 0�2 ms).
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co�x� �
r�x�
r�l�
� �1

2

� E 0�x�
E 0�l�
� �1

2

, �47�

which is a special case of equation (42).

As a second example, consider the pulse propagation in an FGM slab that

consists of aluminum and silicon carbide described in Figure 18. Referring to
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Figure 18. The variation of elastic modulus and density in (a) SiC/Al and (b) Al/SiC FGM
slabs (Table 2 and equation (1)).

x
x
 /

  
o

2

–1

0

1

–2
0.2 0.4 0.6 0.80.0 1.0

x/l

t3

t2

t1

Figure 19. The variation of normalized stress with x in a SiC/Al FGM under free/free bound-
ary conditions at t1� 2�5 ms, t2� 3 ms, and t3� 3�5 ms; the arrows indicate the direction of pulse
propagation (Figures 1(a), 18(a), l� 5 mm, to� 0�2 ms).
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equation (1) and Table 2, it is seen that m 6� n� 2 and consequently the solution
is somewhat more complicated. The results for free/free and ®xed/free boundary
conditions are given in sections 3.2 and 4.2, respectively. Again the thickness of
the slab is l� 5 mm, the pulse duration is to� 0�2 ms (see equation (40)), and the
pulse is applied at x� l. For SiC/Al and Al/SiC FGMs described in Figures
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Figure 20. Variation of stress with t in a SiC/Al FGM under free/free boundary conditions at
x� l/50 (Figures 1(a), 18(a), l� 5 mm, to� 0�2 ms).
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Figure 21. The variation of sxx/so with t in a SiC/Al FGM under free/free boundary conditions
at x� l/2 (Figures 1(a), 18(a), l� 5 mm, to� 0�2 ms).
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Figure 22. The variation of sxx/so with x in a SiC/Al FGM under ®xed/free boundary con-
ditions at t1� 2�5 ms, t2� 3 ms, and t3� 3�5 ms; the arrows indicate the direction of pulse propa-
gation (Figures 1(b), 18(a), l� 5 mm, to� 0�2 ms).
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Figure 23. The variation of sxx/so with t in a SiC/Al FGM under free/free boundary conditions
at x� 0 (Figures 1(b), 18(a), l� 5 mm, to� 0�2 ms).
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Figure 24. The variation of sxx/so with t in a SiC/Al FGM under ®xed/free boundary con-
ditions at x� l/2 (Figures 1(b), 18(a), l� 5 mm, to� 0�2 ms).
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Figure 25. The variation of normalized stress with x in an Al/SiC FGM under free/free bound-
ary conditions at t1� 2�5 ms, t2� 3 ms, and t3� 3�5 ms; the arrows indicate the direction of pulse
propagation (Figures 1(a), 18(b), l� 5 mm, to� 0�2 ms).
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Figure 26. The variation of stress with t in an Al/SiC FGM under free/free boundary con-
ditions at x� l/50 (Figures 1(a), 18(b), l� 5 mm, to� 0�2 ms).
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Figure 27. The variation of sxx/so with t in an Al/SiC FGM under free/free boundary con-
ditions at x� l/2 (Figures 1(a), 18(b), l� 5 mm, to� 0�2 ms).
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Figure 28. The variation of sxx/so with x in an Al/SiC FGM under ®xed/free boundary con-
ditions at t1� 2�5 ms, t2� 3 ms, and t3� 3�5 ms; the arrows indicate the direction of pulse propa-
gation (Figures 1(b), 18(b), l� 5 mm, to� 0�2 ms).
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Figure 29. The variation of sxx/so with t in an Al/SiC FGM under ®xed/free boundary con-
ditions at x� 0 (Figures 1(b), 18(b), l� 5 mm, to� 0�2 ms).
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18(a) and (b), the normalized stress sxx/so is given by Figures 19±24 and 25±30,

respectively. The results of the two examples considered and the general

expression given by equation (42) show that if the pulse is applied on the stiffer

side of the graded medium, the amplitude ratio Ds/so decreases in the thickness

direction. Since in FGM coatings the surface subjected to the impact loading is

usually stiffer, this general result indicates one of the advantages of graded

coatings.

In the absence of an exact solution, as in, for example, problems with ®xed/

free boundaries, one may use the energy balance to examine the accuracy of the

asymptotic solutions. Initially the medium is stress-free and is at rest, meaning

that for tE 0 the elastic energy UV and the kinetic energy UT are zero. For t> 0,

since the medium is non-dissipative, the energy balance principle requires that

the sum of elastic and kinetic energies be equal to the work W of external loads,

that is

W�t� � UV�t� �UT�t�, t > 0: �48�
In the FGM plate shown in Figure 1, for a unit surface area the external work is

W�t� �
�t
0

sxx�l, s� du�l, s�, �49�

where sxx(l, t) is given by equation (40) and the transform of u is given by

equation (11), which, for example, in a slab with ®xed/free boundaries and for

m� n� 2 may be expressed as
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Figure 30. The variation of sxx/so with t in an Al/SiC FGM under ®xed/free boundary con-
ditions at x� l/2 (Figures 1(b), 18(b), l� 5 mm, to� 0�2 ms).
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Û�X, p� � so f̂ �p�
E 00�a� 1�n�2a

�aX� 1�s3 ÿ �aX� 1�s4
s3�a� 1�s3ÿ1 ÿ s4�a� 1�s4ÿ1
" #

: �50�

By inverting equation (50) for X� 1 (or x� l ) and using equation (40), from

equation (49) one obtains

W�t� � ÿsou�l, t�, 0 < tEto,

� ÿsou�l, to�, t > to:
�51�

At time t the total strain energy in the medium (per unit surface area) may be

obtained from

UV�t� �
�l
0

s2xx�x, t�
2E 0�x� dx, �52�

where E 0 is given by equation (2) and sxx may be obtained by inverting equation

(34) in wave summation form. Similarly, the total kinetic energy per unit surface

area may be written as

UT�t� �
�l
0

r�x�
2

@

@t
u�x, t�

� �2
dx, �53�

where r is given by equation (1) and the particle velocity @u/@t is obtained from

equation (50) by inverting pUÃ (x/l, p), again in wave summation form.
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Figure 31. The energy balance in a Ni/ZrO2 FGM slab under ®xed/free boundary conditions
subjected to the pulse sxx(l, t)�ÿso[H(t)ÿH(tÿ to)] (Figures 1(b), 2(a), l� 5 mm, to� 0�2 ms).
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For the FGM plate considered in section 4.1 with ®xed/free boundary
conditions (Figure 1(b)) and the composition as shown in Figure 2(a), the
energy balance is shown in Figure 31. Here the terminology ``total energy'' is
used for UV (t)�UT (t) calculated from equations (52) and (53). The ``input
work'' W(t) is calculated from equation (51). The ®gure shows UV/(UV�UT)
and WV/(UV�UT). Theoretically one should have W(t)/[UV (t)�UT (t)]� 1. For
reference, the energy balance in a pure Ni plate having the same dimension and
under the same boundary conditions and external load as the FGM plate is
shown in Figure 32. The similarity between the two results seems to disappear
after the ®rst few wave re¯ections. Despite this, Figure 31 shows that the
agreement between theoretical and calculated total energies is nearly perfect up
to 11 ms. For t> 11 ms there are signs of greater discrepancy between the two
results, indicating that for longer values of time one needs to retain more than
six terms in the asymptotic series giving the stress and the displacement.
Based on the results obtained in this study one may conclude that: (1) in an

inhomogeneous plate under one-dimensional wave propagation the initial pulse
shape may undergo considerable distortion which depends heavily on the
boundary conditions and material composition; (2) the pulse duration remains
unchanged; (3) the jump discontinuity in stress Ds is a function of location but
not of time; (4) depending on the material property grading, Ds may be greater
or less than so , the amplitude of the input pulse; (5) as the pulse goes through
there is an ``overshoot'' in stress which must be added to Ds in order to calculate
the peak stress; (6) Ds/so can be expressed in closed form as a simple function of
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Figure 32. The energy balance in a homogeneous nickel slab under ®xed/free boundary con-
ditions subjected to the pulse sxx(l, t)�ÿso[H(t)ÿH(tÿ to)] (Figures 1(b), l� 5 mm, to� 0�2 ms).
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location; and (7) in the absence of an exact solution the energy balance principle
may be used as a convergence criterion.
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A: EXPRESSIONS OF THE FIRST SEVEN TERMS ( j� 1, . . . , 7) OF aikj THAT
APPEAR IN EQUATION (21), (i� 1, 2; k� 0, 1, 2, . . .)

aik1 � ÿ 1

8
�n� 1�2a2bik,

aik2 � 1

128
�n� 1�4a4b2ik,

aik3 � 1

128
�n� 1�4a4bik ÿ 1

3072
�n� 1�6a6b3ik,

aik4 � ÿ 1

1024
�n� 1�6a6b2ik �

1

98 304
�n� 1�8a8b4ik,

aik5 �ÿ 1

1024
�n� 1�6a6bik � 1

16 384
�n� 1�8a8b3ik

ÿ 1

3 932 160
�n� 1�10a10b5ik,

aik6 � 5

32 768
�n� 1�8a8b2ik ÿ

1

393 216
�n� 1�10a10b4ik

� 1

188 743 680
�n� 1�12a12b6ik,

aik7 � 5

32 768
�n� 1�8a8bik ÿ 3

262 144
�n� 1�10a10b3ik

� 1

12 582 912
�n� 1�12a12b5ik ÿ

1

10 569 646 080
�n� 1�14a14b7ik:
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B: EXPRESSIONS OF THE FUNCTIONS Wix AND Wil, i� 1, . . . , 4
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where �� |(1ÿm)/(nÿm� 2)| and zo , zl , and zx are given by equation (27).

C: WAVE PROPAGATION IN AN INHOMOGENEOUS MEDIUM WITH A
CONSTANT SPEED OF SOUND

If the speed of sound in an inhomogeneous slab is constant, approximating
the material parameters by

E 0�x� � E 0oe
ax, r�x� � roe

ax, c �
�������������
E 0o=ro

q
, �C1�

for free/free boundary conditions the solution may be obtained as
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The exact and the ®rst term asymptotic solutions for the stress may then be
expressed as
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